

Cost of Service For Energy Utilities

Carl R. Peterson, Ph. D.

UIS Center for Business and Regulation

and

Concentric Energy Advisors Inc.

December 4, 2024

Delivered Remotely

ILLINOIS FOUNDATIONS: Economics

Natural Monopoly: competition leads to monopoly Convert to standard normal:

- Strongest case: MC is declining below AC
- Less stringent case: Cost may be increasing but still cheaper to have one firm provide product

Transactions costs: Sunk cost leads to hold up problem Why state commission-based regulation? Insull's Regulatory Bargain

While it is not supposed to be popular to speak of exclusive franchises, it should be recognized that the best service at the lowest possible price can only be obtained...by exclusive control of a given territory being placed in the hands of one undertaking...In order to protect the public, exclusive franchises should be coupled with the condition of public control requiring all charges for services fixed by public ² bodies to be based on cost, plus a reasonable profit. (S. Insull, President's Address, NELA, 1898)

ILLINOIS SPRINGFIELD Cost of Service and Rate Design

Cost of service is an analytical approach to determining who should pay for the total revenue requirement

Judgment plays a major part of cost of service and reasonable people do disagree

Cost of service supports rate design, but rate design is often related to the objectives of designing rates

ILLINOIS SPRINGFIELD Costs and Prices

What does it mean when we ask how much something costs?

Generally, we mean the price

Cost is not the price but something else

Current Costs

Past Costs

Future Costs

Opportunity Costs

It is this difference between "price" and "cost" that drives the difference in views about pricing public utility services

UNIVERSITY OF <u>ILLINOIS</u> S P P I N G E I E I D	Creating	y Rates	Capital Expenses
J F K T N G F T E L D		Revenue Requirement	OPEX +Interest + Taxes Return of and on Capital
By Function			Operational Data
By Cost Driver		Cost of Service	Economic Analysis
By Customer Cla	SS	Unbundled Costs	Judgment
Revenue Requirement		What is the Output?	
		Class Cost Responsibly	
<u>Rates</u> Residential Commercial ← Industrial		Class Profitability	

Basics of Cost of Service

UNIVERSITY OF ILLINOIS SPRINGFIELD

Rate By Customer Class Customer Charge Demand Charge Energy Charge

Who Pays?

ILLINOIS SPRINGFIELD Introduction to Cost of Service

Cost of service studies (COSS) are used to:

Attribute costs to different customer classes Determine how costs will be recovered from customers within classes Calculate costs of different services Separate costs between jurisdictions Determine revenue requirement between competitive and monopoly services

General types of cost studies

Embedded (ECOSS) Marginal (MCOSS) What are the basic differences?

ILLINOIS SPRINGFIELD Philosophy of Cost Studies (1 of 2)

Cost causation is the attempt to apportion the cost to those who caused the cost to be incurred

Generally will look for a link between the customer activity/characteristics and the cost incurred

An understanding of the operational and economic attributes of the system are used in determining this link

Cost causation is not necessarily an economic concept

Joint and common costs

Costs that are not directly attributable to a customer or customer class

Distribution mains(gas) or lines/substations (electric)

Requires some "allocation"

Sometimes the question of "who benefits" from the cost is mixed into the equation

ILLINOIS SPRINGFIELD Philosophy of Cost Studies (2 of 2)

- Set prices to encourage efficient consumption and production
- Balance the needs of different customer classes
- Pricing should be sufficiently detailed such that each service is priced to recovers the cost of that service
- Avoid excess or deficient earnings
- Ease of collection and understanding of tariffs
- Avoid undue discrimination

ILLINOIS SPRINGFIELD Costs (1 of 2)

Time Frame

Short-run: One input, normally capital, is fixed Fixed Cost: Cost of that fixed input Variable Cost: Cost of all other inputs as output changes Long-run: All inputs are variable, there are no fixed costs in the long-run **Revenue Requirement:** Total cost <u>allowed</u> in rates Joint/Common:

Common costs result from usage of a common asset

Industrial and Residential customers using capacity simultaneously

In principle, allocation could use opportunity cost

Joint costs result in joint production:

Peak and off-peak capacity

In principle, no (supply side) allocation is possible.

Average Cost: Total economic cost divided by output

Marginal Cost: Measure of change in total economic cost as output changes Economic costs supporting optimal pricing Time frame: Short-run v. Long-run

Residual Costs: Difference between LRMC and Revenue Requirement

UNIVERSITY OF ILLINOIS S P R I N G F I E L D Steps in COSS

Obtain test year utility revenue requirement

Other revenues (e.g., off-system sales, Hub sales, etc.) Jurisdictional revenues/costs

Obtain load and market characteristics of customer base

Determine customer classes

Billing determinants: Weather normalization

Apply Cost of Service Approach

Functionalize

Classify

Allocate

Post COSS steps:

Interclass revenue allocation Market characteristics (e.g., bypass opportunities) **ILLINOIS** SPRINGFIELD Customer Class Determination

End use

Space heat, non-space heat, etc.

Type of customer and meter (residential, commercial, industrial, electricity generation)

Size and usage

Volume and capacity

Load factor (average usage relative to peak usage, related to average cost)

Type of load

Firm, interruptible

Competitive alternatives (dual-fuel, bypass)

ILLINOIS SPRINGFIELD What information is needed for COSS?

Revenue requirement

Uniform system of accounts

Plant investment O&M expenses Overhead

Capital spending plans (MCOSS but can be useful for ECOSS as well)

Billing Determinants

Projected and actual revenues by customer class Sales (weather adjusted) by customer class Number of customers Demand

Load research

Peak demand by customer class Special studies (transport customers, storage, etc.)

Other revenues (off-system sales, hub revenues, etc)

Competitive/Market characteristics

ILLINOIS SPRINGFIELD Pros and Cons of COSS

By nature, COSS are not particularly accurate, many regulators use COSS as guides ECOSS

Equates to revenue requirement

Require significant judgement on the part of the analyst

Different choices can lead to dramatically different outcomes

Generally based on the past not the future (only if past looks like future will this make sense) Extremely data intensive

More transparent

MCOSS

Does not equate to revenue requirement (how to adjust?) Less judgment on part of analysts Many observers claim MCOSS is less transparent Tends to allocate more cost to residential customers Better pricing signals Question of long-run v. short-run (or intermediate run?) Tends to more closely follow utility investment

Embedded Cost of Service

ILLINOIS SPRINGFIELD Embedded Cost Studies

Step 1: Functionalize (production, distribution, transmission etc.)

- For gas and electric utilities, functionalization is generally an accounting exercise (i.e., use USOA)
- Exception: Electric transmission may need additional analysis (e.g., FERC seven factor test).
- Step 2: Classification (demand-related, volume-related, customer-related, etc.)

Step 3: Allocation

Direct assignment

Allocator (demand, energy, customers, etc.)

UNIVERSITY OF Natural Gas Supply Chain OIS **SPRINGFIELD Commodity** Transmission Distribution Customer Production Storage Storage Competitive Supply Competitive or Tariff **Commodity Price** Rate Charge Commodity Pipeline or Local Production Marketer Contract Demand + Variable Charge Contracts Purchase Gas **Commodity Price** Adjustment = WACG Marketer **Base Rates Delivery Costs** Contract Upstream Downstream

21

ILLINOIS SPRINGFIELD OVERVIEW OF Cost Allocation Process

Operations and Customer Data

ILLINOIS SPRINGFIELD Step 1: Functionalization

What is the purpose of the cost?

Electric and Gas utilities

Generation or gas production

Distribution (low voltage lines, low pressure mains)

Transmission (high voltage lines, high pressure mains)

Customer Service (costs associated with hooking up customers, meters, service drops, etc.)

General plant and administrative and general expenses (management costs, costs of buildings and offices, etc.)

Determines cost of the different operations of the utility

Best approach is direct assignment

ILLINOIS SPRINGFIELD FUNCTIONALIZATION- General Plant

Overhead (A&G) is more difficult

A&G costs cover items such as: (1) general management salaries and associated costs, (2) pensions and benefits, (3) insurance expenses, (4) shared services.

A&G often allocated based on:

labor by function

Net plant (excluding general plant)

O&M (excluding gas costs)

Compound factors

"Efforts" studies (find cost drivers)

ILLINOIS SPRINGFIELD Examples: Discuss

- 920 Administrative and General Salaries
- 923 Outside Services Employed (corporate shared services)
- 924 Property Insurance
- 925 Injuries and Damages

ILLINOIS SPRINGFIELD FUNCTIONALIZED Revenue Requirement (A) (B) (C) (D) (E) (F)

	(A)	(B)	(C)	(D)	(E)	(F)	
Line No.		Production	Transmission	Distribution	General	Total	
1	Total Operating Expenses						
2	Production	188,377,894				188,377,894	
3	Transmission		4,611,093			4,611,093	
4	Distribution			10,644,700		10,644,700	
5	Customer Accounts			8,231,423		8,231,423	
6	A&G				21,077,467	21,077,467	
7	Total Depreciation Expense	11,104,730	17,903,809	16,447,534	185,516	45,641,588	
8	TOTAL O&M	199,482,624	22,514,902	35,323,657	21,262,983	278,584,165	
9	Net Plant in Service	305,700,627	207,856,491	258,576,888	44,397,224	816,531,230	
40	Dete Dese Additions	20 504 564	00.044.000	22,400,005	5 740 000	-	
10	Rate Base Additions	39,584,564	26,914,922	33,482,605	5,748,908	105,731,000	
11	Rate Based Subtractions	25 870 307	17 590 121	21 882 400	3 757 172	69 100 000	
		20,010,001	11,000,121	21,002,400	0,101,112	00,100,000	
12	TOTAL RATE BASE	319,414,885	217,181,292	270,177,093	46,388,960	853,162,230	
13	Proposed Return	9.50%	9.50%	9.50%	9.50%	9.50%	
14	Total Return	30,344,414	20,632,223	25,666,824	4,406,951	81,050,412	
15	Total Povenue Pequirement Ex A&C, Con, Taxe	220 827 038	43 147 125	60 990 481		333 964 643	
15	Total Revenue Requirement EX Add, Gen, Taxe	223,021,030	43, 147, 123	00,330,401	-	333,304,043	
16	Allocation of General Revenue Req. and Taxes	35%	5%	60%			
17	Taxes Other Than Income	\$ 6,289,426	\$ 898,489	\$ 10,781,872			
18	Income Taxes-State	\$ 330,400	\$ 47,200	\$ 566,400			
19	Income Taxes-Federal	\$ 4,386,550	\$ 626,650	\$ 7,519,800			
20	Gen Plant A&G and Taxes	\$ 19 990 852	\$ 2 855 836	\$ 34 270 033		57 116 721	
20		÷ 10,000,002	\$ 2,000,000	÷ 04,210,000		01,110,121	
21	Total Functional Rev Req.	249,817,890	46,002,961	95,260,514		391,081,365	

ILLINOIS SPRINGFIELD Step 2: Classification of Costs

What service is provided?

Providing Access Standing Ready Providing Commodity

What are the costs of the service provided?

Providing Access Varies with Number of Customers Standing Ready Varies with Capacity Needs Providing Commodity Varies with Volume

Provides basis for pricing different elements (customer charge, energy or volume, demand)

ILLINOIS SPRINGFIELD Classification of Costs (Gas)

	Classification with Allocation Methods							
Function	Demand	Commodity	Customer	Revenue				
Production & Gas Supply								
Gas Supply	Capacity	Volume						
Storage	Capacity	Volume						
LNG	Capacity	Volume						
Propane	Capacity	Volume						
Transmission								
Compressor Stations	Capacity	Volume						
Mains	Capacity	Volume						
Regulatory Stations	Capacity	Volume	Specific Assignme	ent				
Distribution								
Compressor Stations	Capacity							
Mains	Capacity		No. Customers					
M&R Stations	Capacity		No. Customers					
Services	Capacity		No. Customers					
Meters			No. Customers					
House Reg			No. Customers					
Imd M&R Stations			Specific Assignme	ent				
Customer Installations			Specific Assignme	ent				
Other								
Customer Accounts			No. Customers					
Sales Expense			No. Customers					
Revenue								
Revenue from Sales				Revenue				
Revenue Taxes				Revenue				
Source: Adapted from American Gas	Source: Adapted from American Gas Association, Gas Rate Fundamentals, (Arlington, VA, 1987)							

ILLINOIS SPRINGFIELD Classification of Costs (Electric)

Functions	Demand	Energy	Customer Revenue	
Production				
Thermal	Х	х		
Hydro	Х	х		
Other	Х	Х		
Transmission	х	х	x	
Distribution				
OH/UG Lines	Х	Х	x	
Substations	Х	Х	х	
Services			x	
Meters			x	
Customer			x x	

Source: NARUC Electric Utility Cost Allocation Manual 1992

ILLINOIS SPRINGFIELD Application: The Logic of Classification--Gas Distribution Mains

What are gas distribution mains used for?

Meeting peak demand?

Historic and future planning parameters

Mains are sized to meet the highest peak demand on the peak day

Meeting average demand?

What evidence exists concerning the reason for investment (e.g., maintenance and replacement of existing mains)

Hooking up customers?

How does investment cost change with number of customers?

UNIVERSITY OF ILLINOIS SPRINGFIELD

Zero-intercept method

Average Cost

Some level of main costs are required to serve new customers

This level can be deduced from regressing unit costs of various size of mains on the sizes of mains

This suggests a level of main costs that is necessary just to expand system (i.e., just to hook up customers some level of main investment is needed)

SPRINGFIELD

Minimum Distribution System-Example

Size	Size Feet		Total Cost	Cost per Fo			
2" or less	2,543,218	\$	6,413,228	\$	2.52		
3 and 4"	972,435	\$	4,755,842	\$	4.89		
6 and 8"	84,480	\$	619,326	\$	7.33		
Total	3,600,133	\$	11,788,396	\$	3.27		
Total >2"	1,056,915	\$	5,375,168	\$	5.09		
@ 2" Cost	1,056,915	\$	2,665,221	\$	2.52		
Difference		\$	2,709,947				
Cost of 2" Mi	nimum						
Distribution System			9,078,449				
Percent Customer-related			77%				
Percent Dema	and-related		23%				

The difference between the 2" main costs and the above 2" main costs is the demand related costs (i.e. the costs in excess of a minimum distribution system)

77% (9m/11m) are customer-related, the remaining costs (23%) are demand related

ILLINOIS SPRINGFIELD Discussion of Customer-Related Costs

Classifies Larger Share to Customer Methods are Ad Hoc Correlation with Number of Customers Bonbright: These costs are unattributable What are we left with?

ILLINOIS SPRINGFIELD Classification Example: Electric Generation

Generation Plant

Is generation plant entirely related to providing capacity? Does plant provide energy?

Options

100% Demand

Load Factor (some demand some energy) (come back to this later)

ILLINOIS SPRINGFIELD Classification Example: Results

	ABC Edison Comp	any									
	Exhibit 2.4 (COSS)	-									
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
Line No.			Production		Distribution		Transmission			Total	
		Demand	Energy	Customer	Demand	Energy	Customer	Demand	Energy	Customer	
1	Total Operating Expenses										
2	Production	34,282,654	165,385,485	-							199,668,139
3	Distribution				22,162,739	1,076,066	3,853,430				27,092,234
4	Transmission							18,086,854	-	4,428,048	22,514,902
5	A&G	-	6,555,016	3,703,095	-	936,431	529,014	-	11,237,171	6,348,163	11,723,556
6	TOTAL O&M	34,282,654	171,940,502	3,703,095	22,162,739	2,012,497	4,382,443	18,086,854	11,237,171	10,776,211	278,584,165
7	Net Operating Income	30,330,685	1,405,063	-	23,930,743.27	2,087,967.00	3,164,702.86	17,413,313.68	173,997.25	2,543,939.78	81,050,412
8	Taxes Other Than Income	-	6,289,426	-	-	10,781,872	-	-	898,489	-	17,969,787
9	Income Taxes-State	-	330,400	-	-	566,400	-	-	47,200	-	944,000
10	Income Taxes-Federal	-	4,386,550	-	-	7,519,800	-	-	626,650	-	12,533,000
	Total Classified Rev Req.	64,613,339	184,351,941	3,703,095	46,093,482	22,968,536	7,547,146	35,500,168	12,983,507	13,320,150	391,081,365
	Note: Overhead and General p	lant allocated to fu	nction using alloca	ation in Exhibit (5.0 (COSS)						
ILLINOIS SPRINGFIELD Step 3: Allocation to Customer Classes

Process of assigning revenue requirement to customer classes

Customer classes attempt to group customers with similar cost characteristics

Allocation requires an understanding of the cost drivers like classification and requires analysis of system and class demand characteristics

Demand-related

Volume-related

Customer-related

ILLINOIS SPRINGFIELD Allocation Data

Data Type	Measuring Location	Time Frame	Source	Used For:
Volume				
Gas (therms) Electricity (kWh) Water (Gallons)	Customer Meter Locations on System	Annually Monthly Hourly	Utility Billing and Control Systems	Allocation of Volume-related Costs
Maximum Usage (Demand) Gas (therms) Electricity (kW) Water (Gallons)	Customer Meter Locations on System	At System Peak Customer's Peak Equipment Peak	Utility Billing and Control Systems Load Research	Allocation of Demand-related Costs
Customers Service Lines	System System	Annual Annual	Utility Records	Customer- related Costs Services
Line Transformers	System	Annual		Transformers

Pattern of demand over a cycle (day, month, year) Average load

Peak load is maximum demand on system

Coincident peak is a customer or customer's classes' maximum load at the time of the system peak demand

Non-coincident peak is the maximum load of the customer or customer class at any time

ILLINOIS SPRINGFIELD Load Data: Electric Daily

40

ILLINOIS SPRINGFIELD Load Data: Electric Monthly

ILLINOIS SPRINGFIELD Load Factor

LF = average load / peak load

LF is between 0 and 1: Higher (lower) load factor the less (more) variable the load is relative to the average load

Higher load factors translate into lower average costs Load factors vary between customer classes (industrial tend to have high load factors, residential tend to have low load factors)

ILLINOIS SPRINGFIELD Demand Allocators

Coincident Peak (CP): Measure of class contribution to system peak

Logic: System planned to meet peak, costs should be allocated based on customer class contribution to peak demand

Non-coincident Peak (NCP): measure of maximum demand of each class regardless of time of demand

Logic: Utility must meet customer peak demand

Unaffected by timing of system peak

Average and Excess (AE): = LF*AVG DEM + (1-LF)* (Class NCP – AVG DEM)

Logic: Low load factor customers do contribute to load diversity reducing demand costs System peak demand not generally important for this allocator

Average and Peak (A&P): weight *AVG DEM + (1-weight)* (CP)

Logic: utility assets are uses year-round, not just at peak

Not all assets deployed to meet peak (e.g., transmission assets may be used to find new supply which is used year-round)

Weighting could be LF or some other number e.g., 50/50 (called the Seaboard Method)

ILLINOIS SPRINGFIELD Demand Allocators: Example

		D	emand Allo	cators		
	1 CP	Percent	Average of 12 CP	Percent	Non- coincident Peak	Percent
DOM	4,735	34.84%	3,522	32.22%	5,357	36.94%
LSMP	5,062	37.25%	4,173	38.17%	5,062	34.91%
LP	3,347	24.63%	2,932	26.82%	3,385	23.34%
AG&P	447	3.29%	266	2.43%	572	3.94%
ASL	-	0.00%	38	0.35%	126	0.87%
TOTAL	13,591	100%	10,931	100%	14,502	100%
(1) Summe	er is assum	ed to be July	y-Septembe	r		
(2) Winter	is assumed	l to be Dece	mber-Febru	ary		

LLINOIS Generation Classification and Allocation

Base-Intermediate-Peak

- Production stacking method
- Percent of hours connected to load
- Classify base as 100 % energy, peak as 0%, intermediate by hours connected
- Apply energy and demand allocators

Probability of Dispatch

- Assign each hour gross investment using output percent of total to obtain capital costs by hour for each unit
- Multiple by the class load percent of total (at generation) for each hour to obtain hourly capital costs.
- Sum totals to obtain allocation factors by class.

ILLINOIS SPRINGFIELD Demand Allocators: Average and Excess

	Average Demand (3)	Percent * LF	Excess Demand (NCP - AVG)	Percent * (1-LF)	Total
DOM	2,447	18.00%	2,910	18.46%	36.46%
LSMP	2,676	19.69%	2,386	15.13%	34.82%
LP	2,466	18.15%	919	5.83%	23.97%
AG&P	254	1.87%	318	2.01%	3.89%
ASL	59	0.43%	67	0.43%	0.86%
TOTAL	7,902	58.14%	6,600	41.86%	100.00%

The higher the load factor the more the allocator reflects the average demand (for generation-related costs this might reflect the fact that base load plants run all year)

The lower the load factor the more this reflects peak demand (notion is that "excess demand" drives need for peaking plants).

ILLINOIS SPRINGFIELD What is the difference?

Source: R. Feingold "Traditional and Unbundled LDC Rate Design" AGA Rates School, August 2010, Center for Business and Regulation, Chicago, IL

ILLINOIS SPRINGFIELD Energy and Customer Related Allocators

Total volume usage by class

Customer-related

Number of customers Weighted number of customers Meter costs Billing costs

Services

Meter-reading

Meter Cost	G	S-1	GS	-2	GS	-3	GS	-4	GS-:	5	GS	-6	GS-7	
1	\$ 288	130,430)											
2	\$ 444			5,557										
3	\$ 1,177					966								
4	\$ 2,116					2,096								
5	\$ 3,723							470						
6	\$ 4,099							541						
7	\$ 5,251							449						1
8	\$ 75,000							3		4				
9	\$ 280,000											10		
Total Meters		130,430)	5,557		3,062		1,463		4		10		1
Total Cost	\$	37,563,840	\$	2,467,308	\$	5,572,118	\$	6,550,068	\$	300,000	\$	2,800,000	\$	5,251
Average Cost	\$	288	\$	444	\$	1,820	\$	4,477	\$	75,000	\$	280,000	\$	5,251
Weight		1.00		1.54		6.32		15.55		260.42		972.22		18.23
Weighted Customers		130,430		8,567		19,348		22,743		1,042		9,722		18

RSI O F **Allocation: Joint Production** INGFIELD S P Price **MC**_{JP}: Cost of Joint Production $\mathrm{MC}_{\mathrm{WR}}$: Cost of Hooking up Water Meter to Gas AMI mesh network D1: Demand for gas meter reading D2: Demand for water metering reading P_{JP} MC S_{WR} D1 P_{WR} MC D2 Q_{Gas} Q_{WR} Quantity of Metering

49

UNIVERSITY OFILLINOISSPRINGFIELDSpecial Studies

Customer specific usage:

Large distribution mains or substations (376) ; services (380); meters (381), AMI (382.1)

Uncollectible expenses (904) Unbundled administrative costs

Special charges

Service activation

Reconnection

Miscellaneous fees

ILLINOIS SPRINGFIELD How are allocators chosen?

Reflective of system planning and operation Cost drivers should be identifiable

- Directly assigned costs should not be allocated
- Stable results over time
- Benefits of system are often taken into account

ILLINOIS SPRINGFIELD Allocation Principles

Herz (1956)	NARUC (1955)	Brattle (2019)
All utility customers should contribute to capacity costs	The method should establish a minimum demand-cost allocation to off-peak customers.	Customers who benefit from the use of the system should also bear some responsibility for the costs of utilizing the system
The longer the period of time that a particular service preempts the use of capacity the greater should be the amount of capacit costs allocated to that service.	The method should be judged on its recognition of (a) ^y demand (b) usage and (c) time of use	Reflect cost causation as much as possible; i.e., based upon the actual activity that drives a particular cost and on rate classes' share of that activity;
The allocation of capacity cost should change gradually with changes in the pattern of sales.	The method should result in relatively stable cost assignment which would not change radically with a shift in loads.	Produce fairly stable results on a year-to-year basis
Any service which makes exclusive use of a portion of capacity should bear all the demand costs assignable to that portion of capacity. A 100 percent load factor service should be allocated the entire demand costs but no more.	The method should recognize the characteristic of the various loads	Reflect the actual planning and operating characteristics of the utility's system;
Service that can be restricted by the utility should be allocated less in demand costs	The method should permit allocation to a load which is completely under utility control, such as off peak water heating	Recognize customer class characteristics such as demands, peak period consumption, number of customers and directly assignable costs
The capacity costs allocated to one class of service should not	The method should be based on some basic philosophy The method should require a minimum of measurements before and after allocation	5
be affect by the way in which the remaining capacity costs are allocated to other classes.	The method should not be dependent upon judgment introduced in the allocation process	
More demand costs should be allocated to a unit of capacity preempted during a peak period than to one preempted in off- peak	The method should permit an estimate of the capacity cost that could be assigned to prospective loads	52

UNIVERSITY OF **ILLINOIS** SPRINGFIELD

Ratemaking Example: ECOSS

The Gas Company

Schedule 1.00 Summary of Embedded Cost of Service Study

Line No.		R	SC-1 Residential	SC-2 Commercial	(SC-3 Large General Service	SC	4 Contract Service	SY	STEM TOTAL
1	Current Operating Revenues	\$	47,923,277	\$ 13,814,922	\$	19,608,070	\$	933,863	\$	82,280,132
2	Current Other Revenue	\$	(1,070,311)	\$ (508,614)	\$	(468,361)	\$	(9,963)	\$	(2,057,249)
3	CURRENT TOTAL REVENUE	\$	46,852,966	\$ 13,306,308	\$	19,139,709	\$	923,900	\$	80,222,883
4	OPERATING EXPENSES									
5	Operation and Maintenance	\$	6,407,763	\$ 2,680,464	\$	2,431,420	\$	60,034	\$	11,579,682
6	Depreciation Expense	\$	10,840,711	\$ 5,129,462	\$	4,734,131	\$	126,629	\$	20,830,933
7	Administrative and General and Cust Exp	\$	21,276,701	\$ 3,753,786	\$	192,689	\$	3,003	\$	25,226,179
8	Taxes Other Than Income	\$	2,171,848	\$ 966,794	\$	898,587	\$	26,910	\$	4,064,140
9	Income Taxes	\$	6,748,191	\$ 3,092,328	\$	3,044,852	\$	86,101	\$	12,971,472
10	TOTAL OPERATING EXPENSES	\$	47,445,215	\$ 15,622,834	\$	11,301,679	\$	302,678	\$	74,672,406
11	CURRENT NET OPERATING INCOME	\$	(592,248)	\$ (2,316,526)	\$	7,838,030	\$	621,221	\$	5,550,477
12	RATE BASE									
13	Net Plant in Service		140,664,455	64,705,341		64,528,571		1,729,747		271,628,114
14	Rate Base Additions									
15	Cash Working Capital		(618,943)	(146,043)		(68,008)		(1,678)		(834,672)
16	Materials and Supplies		4,206,299	992,499		462,181		11,403		5,672,381
17	Prepayments		1,232,445	290,802		135,419		3,341		1,662,007
18	Deferred Charges:		592,462	139,794		65,099		1,606		798,961
19	Gas Stored Underground		25,872,855	15,166,248		16,221,291		486,639		57,747,033
20	Unamortized Software		6,394,853	1,107,770		16,969		101		7,519,693
21	Rate Base Subtractions									
22	Customer Deposits		-	-		-		-		-
23	Construction Advances		(28,684,419)	(4,968,955)		(76,115)		(452)		(33,729,941)
24	Net Asset Retirement Obligation		(465,837)	(198,520)		(179,362)		(5,369)		(849,088)
25	Deferred Investment Tax Credit		(3,375)	(1,438)		(1,300)		(39)		(6,152)
26	Deferred Income Taxes		(13,799,986)	(5,533,029)		(4,787,438)		(143,228)		(24,263,681)
27	NET RATE BASE	\$	135,390,809	\$ 71,554,469	\$	76,317,306	\$	2,082,071	\$	285,344,655
28	CURRENT RETURN		-0.44%	-3.24%		10.27%		29.84%		1.95%

29 PROPOSED REVENUES @ Equal Returns \$ 60,307,342 \$ 22,420,508 \$ 18,551,823 \$ 500,475 \$ 101,780,148

UNIVERSITY OF **ILLINOIS** SPRINGFIELD

Interclass Revenue Allocation

The Gas Company

Schedule 1.01 Interclass Revenue Allocation

Line No.		SC-1 Residential	SC-2 Commercial	SC-3 Large General Service	SC-4 Contract Service	SYSTEM TOTAL
1	REVENUES @ CURRENT RATES	46,852,966	13,306,308	19,139,709	923,900	80,222,883
2	RETURN @ CURRENT RATES	-0.44%	-3.24%	10.27%	29.84%	1.95%
3	RETURN INDEX	(0.22)	(1.66)	5.28	15.34	1.00
4	PROPOSAL AT EQUALIZED RETURNS					
5	PROPOSED REVENUES	60,307,342	22,420,508	18,551,823	500,475	101,780,148
6	PROPOSED INCREASE (DECREASE)	13,454,375	9,114,200	(587,886)	(423,425)	21,557,265
7	PERCENT INCREASE (DECREASE)	28.72%	68.50%	-3.07%	-45.83%	26.87%
8	PROPOSED NET OPERATING INCOME	12,862,127	6,797,675	7,250,144	197,797	27,107,742
9	RETURN	9.50%	9.50%	9.50%	9.50%	9.50%
10	RETURN INDEX	1.00	1.00	1.00	1.00	1.00
18 19	CONSTRAINED PROPOSAL (BASED ON ECOSS) CONSTRAINED REVENUES	56,223,560	22,420,508	18,551,823	923,900	98,119,791
20	PROPOSED INCREASE (CONSTRAINED CLASSES)	9,370,593	-	-	-	
21	PERCENT INCREASE (CONSTRAINTS)	20.00%	NONE	NONE	0.00%	
22	REVENUE SHORTFALL FROM CONSTRAINTS	3,660,357				
23	REALLOCATION OF SHORTFALL	-	2,002,988	1,657,370	-	
24	PROPOSED REVENUES (CONSTRAINED)	56,223,560	24,423,496	20,209,193	923,900	101,780,148
25	PERCENT INCREASE (ALL CLASSES)	20.00%	83.55%	5.59%	0.00%	26.87%
26	PROPOSED NET OPERATING INCOME	8,778,345	8,800,662	8,907,514	621,221	27,107,742
27	RETURN	6.48%	12.30%	11.67%	29.84%	9.50%
28	RETURN INDEX	0.68	1.29	1.23	3.14	1.00

ILLINOIS SPRINGFIELD Interclass Revenue Allocation Issues

- Can customer class withstand increase to cost of service?
- What do we do with revenues for special contract customers?
- What types of subsidies exist?

Marginal Cost of Service

ILLINOIS SPRINGFIELD Why Marginal Cost?

ILLINOIS SPRINGFIELD What Marginal Costs?

Time Element

Short-run: No Changes in Capacity Long-run: Capacity changes

Relationship of Costs to Time

Marginal and average short-run cost are production time cost Average long-run cost is the minimum of average short-run cost

What is the relationship of costs?

In simple version of model: LRMC = SRMC = SRAC = LRAC Set price equal to SRMC or LRMC, does not matter, right?

ILLINOIS SPRINGFIELD What Marginal Costs?

Bridge is built with a set of fixed assets

Charging a price greater than zero underuses the assets

- What if charging price of zero causes congestion?
- Set price equal to congestion costs (short-run marginal cost)

ILLINOIS SPRINGFIELD TOll Bridge Pricing

ILLINOIS SPRINGFIELD What is wrong with SRMC?

SRMC changes with usage or congestion (i.e., demand)

Volatile prices might cause customers to over or under invest The administrative cost of calculating and disseminating prices is too high What if SRMC does not cover cost of construction?

Set priced based on LRMC

Isn't this the same as SRMC? Only under restrictive conditions Capacity is continuous both increasing and decreasing Investment is optimal or adjusts quickly to changing demands Not likely for a gas utility
LRMC Sends Constant Long-term Price Signals
LRMC takes into Account Capital Costs
LRMC is most Common Approach

ILLINOIS SPRINGFIELD Reconciling Marginal Cost with Revenue Requirement and Pricing

UNIVERSITY OFILLINOISSPRINGFIELDMarg

Marginal Costs

<u>Electric</u>

<u>Water</u>

Marginal Cost by Function Classification

Production	Energy/Volume	Fuel Cost & O&M Purchased Power	Gas Cost Some delivery costs	Power, Chemicals, Maintenance
	Capacity	Generation Asset	Storage	Source of Supply (Surface, ground)
				Treatment Plant
Transmission	Capacity	High Voltage Lines Transformers	High Pressure Mains Regulator Stations	High Pressure Mains
Delivery	Capacity	Low Voltage Lines	Low Pressure Mains	Low Pressure Mains
		Transformers	Regulator Stations	
Customer	Customer	Meters	Meters	Meters
		Services	House Regulators Relief Valves Services	Services

UNIVERSITY OF **ILLINOIS** SPRINGFIELD

Converting Fixed Cost to MC Using Economic Carrying Charge

	Derivation and		
Inputs	<u>Symbol</u>		Economic Carrying Charge
Investment Book Basis (\$)	IBB	\$ 1.00	Year T=1
Investment Tax Basis (\$)	ITB	\$ 1.00	1
Book Life (years)	Ν	10 \$	0.1457 First Year Rental Rate per Dollar of Investment = Economic Carrying Charge (ECC)
MACRS Class (years) (Tax Depreciation)		5	ECC = PVRR (WACC-AT - RPIX)*(1 + RPIX)^ (T-1) *Discount Factor
Incremental Income Tax Rate			
			1 divided by 1-{ (1 + RPIX) / (1+ WACC-AT)}^N
Federal	FT	21.00%	Discount Factor = = 2.21
State	ST	7.00%	
Combined	CT =FT*(1-ST) + ST	26.53%	
Incremental Capital Structure			Levelized Carrying Charge
Equity	%E	46.25%	\$0.1503 Annual Payment to recover PVRR at WACC-AT over life of asset
Debt	%D	53.75%	
Incremental Cost of Capital			
Equity	ROE	9.14%	
Debt	ROD	5.24%	
	WACC-AT =		
Weighted Average Cost of Capital	%E*ROE + %D*ROD	7.04%	
Inflation less Productivity	RPIX	0.77%	

ILLINOIS SPRINGFIELD **Converting Fixed Cost to MC** Find Marginal Cost Gas Transmission Main

<u>_ine No</u>	Cost Category	<u>Amc</u>	ount	Notes
	Total Cost of New Gas Transmission (In next few			Includes only those projects intended to meet new design day
1	years)	\$	6,930,000	forecasts
2	Incremental System Load (MMCE Design Day)		150	Estimate from Engineering Costs and includes any financing
2	incremental System Load (Mincr Design Day)		150	required
3	Marginal Investment Cost per MCF	\$	46.20	Line 1 divided by Line 2
	Marginal Investment Cost per MCF with General			
4	Plant	\$	49.06	General Plant Estimated at 6.2% per dollar of new plant
5	Annual Carrying Costs		12.77%	Economic Carrying Charge
6	Overhead (A&G) Related to New Plant		0.06%	Estimated Marginal Overhead Expenses
7	Total Carrying Charge		12.83%	Line 5 + Line 6
8	Annualized Costs	\$	6.29	Line 7 * Line 4
9	O&M Expenses	\$	0.68	Estimated Marginal O&M Expenses associated with Plant Investment
10	A&G Expenses for O&M Expenses	\$	0.95	Estimated A&G For O&M Expenses (1.4 * Line 9)
11	Annual Cost	\$	7.25	Line 8 + Line 10
12	Working Capital	\$	0.01	Estimated as Marginal Working Capital in Revenue Requirement
13	Annual Marginal Cost For Transmission Mains	\$	7.26	Line 11 + Line 12

* Based on: Dir. Testimony of H. Parmesano, ICC Docket No. 04-0779, Ex. 13.1

ILLINOIS SPRINGFIELD Example: MC of Gas Storage

Derivation	of Marginal Storage Costs					
Line No.			2012		2013	
1	Total Storage Revenues	\$	2,018	\$	2,147	
2	Baseload Volume (MMCF)		9,000		9,000	
3	Storage Cost per MCF		0.22		0.24	
4	Marginal Cost of Storage			 		0.23
C	Datia of Salaa Customer Cou		, to Total	 		 500/
)	Ratio of Sales Customer Cap	pacity	/ to Total	 		 5370
	Send out in Peak Season					
6	Marginal Cost in Peak Sease	on				\$ 0.14
	Per MCF					

UNIVERSITY OF ILLINOIS SPRINGFIELD

Example: Marginal Energy Costs

ABC Edison Company

Exhibit 7.0 (COSS)

									Marginal Energ	gy Costs (including l	osses)	
								Summer	Non-Summer	Sun	nmer	Non-S	ummer
	Ger	neration	Distribution	I	Distribution	Tra	ansmission						
	Ca	pacity	Capacity		Customer		Capacity	Non-TOU	Non-TOU	Peak	Off-peak	Peak	Off-peak
C-1 Residential	\$	75.89	\$ 21.35	\$	8.83	\$	22.00	29.56	27.01	34.36	24.77	31.48	22.54
C-2 Commercial	\$	75.89	\$ 20.53	\$	14.67	\$	22.00	28.67	26.20	33.33	24.02	30.54	21.86
C-3 Large General Service	\$	75.89	\$ 20.53	\$	66.25	\$	22.00	27.81	25.41	32.33	23.30	29.62	21.21
C-4 Contract Service	\$	75.89	\$ 	\$	66.25	\$	22.00	27.40	25.03	31.84	22.95	29.18	20.89

Marginal Energy Costs (at Generation, \$/MWH)

Peak Hours	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC
10	29.90	29.40	29.99	30.59	31.35	32.92	33.25	33.58	31.90	29.99	29.40	29.90
11	31.10	30.50	31.11	31.73	32.53	34.15	34.49	34.84	33.10	31.11	30.50	31.10
12	29.70	27.60	28.15	28.72	29.43	30.90	31.21	31.53	29.95	28.15	27.60	29.70
13	27.40	26.00	26.52	27.05	27.73	29.11	29.40	29.70	28.21	26.52	26.00	27.40
14	27.60	25.30	25.81	26.32	26.98	28.33	28.61	28.90	27.45	25.81	25.30	27.60
15	26.40	24.70	25.19	25.70	26.34	27.66	27.93	28.21	26.80	25.19	24.70	26.40
16	25.80	24.80	25.30	25.80	26.45	27.77	28.05	28.33	26.91	25.30	24.80	25.80
17	29.20	28.10	28.66	29.24	29.97	31.46	31.78	32.10	30.49	28.66	28.10	29.20
18	37.50	30.30	30.91	31.52	32.31	33.93	34.27	34.61	32.88	30.91	30.30	37.50
19	33.10	36.50	37.23	37.97	38.92	40.87	41.28	41.69	39.61	37.23	36.50	33.10
20	28.70	28.90	29.48	30.07	30.82	32.36	32.68	33.01	31.36	29.48	28.90	28.70
21	25.20	26.50	27.03	27.57	28.26	29.67	29.97	30.27	28.76	27.03	26.50	25.20
22	23.50	25.60	26.11	26.63	27.30	28.67	28.95	29.24	27.78	26.11	25.60	23.50
AVERAGE	28.85	28.02	28.58	29.15	29.88	31.37	31.68	32.00	30.40	28.58	28.02	28.85
Off-Peak Hours												
1	18.70	18.66	19.04	19.42	19.90	20.90	21.11	21.32	20.25	19.04	18.66	18.70
2	18.30	18.26	18.63	19.00	19.48	20.45	20.65	20.86	19.82	18.63	18.26	18.30
3	18.20	18.16	18.53	18.90	19.37	20.34	20.54	20.75	19.71	18.53	18.16	18.20
4	18.10	18.06	18.43	18.79	19.26	20.23	20.43	20.63	19.60	18.43	18.06	18.10
5	18.20	18.16	18.53	18.90	19.37	20.34	20.54	20.75	19.71	18.53	18.16	18.20
6	19.00	18.96	19.34	19.73	20.22	21.23	21.44	21.66	20.58	19.34	18.96	19.00
7	21.70	21.66	22.09	22.53	23.09	24.25	24.49	24.74	23.50	22.09	21.66	21.70
8	23.20	23.15	23.62	24.09	24.69	25.93	26.19	26.45	25.12	23.62	23.15	23.20
9	26.10	26.05	26.57	27.10	27.78	29.17	29.46	29.75	28.27	26.57	26.05	26.10
23	21.50	21.46	21.89	22.32	22.88	24.03	24.27	24.51	23.28	21.89	21.46	21.50
24	19.60	19.56	19.95	20.35	20.86	21.90	22.12	22.34	21.23	19.95	19.56	19.60
AVERAGE	20.24	20.20	20.60	21.01	21.54	22.61	22.84	23.07	21.92	20.60	20.20	20.24
	noration											
Dook	21.26											
Off Dook	22.61											
JII-Feak	22.01											
NON-SUMMER												
Peak	28.74											
Off-Peak	20.58											

Example: Transmission Marginal Capacity Costs

Determine from transmission plan

- Some companies use historic data as well
- Step 1: Determine which projects or portions of projects are needed to serve incremental load (as opposed to maintenance or interconnection to other markets)
- Step 2: Use capital cost transformation method to find first year costs
- **Issue:** What if there are no planned transmission investments to meet incremental load? MC = O

UNIVERSITY OF ILLINOIS SPRINGFIELD

Connection between Marginal and Embedded

If marginal costs are below average cost then average cost must be falling. What does this say about embedded cost?

Maybe nothing! Why?

What causes the divergence? Degree of optimal historical investment Philosophy of regulator Size and type of recent additions **ILLINOIS** SPRINGFIELD Practical Issus in Marginal Cost Analysis

Sunk Costs MC are Hypothetical MC will not normally equal revenue requirement Embedded costs are perceived to be easier to understand.

ILLINOIS SPRINGFIELD What Next?

Marginal Cost Revenue (MCR) Study

Find MC by Function and Determine Total MC MCR = Units * Unit Annual Marginal Cost

Compare to Revenue Requirement

Will need adjustment Equal Percent of Marginal Cost Lump Sum Ramsey Solution: (P – MC)/P = c/ (Elasticity of Demand)* Use Embedded Cost Study

ILLINOIS SPRINGFIELD Marginal Cost Revenue Study

SUMMARY	F	TOTAL MARGINAL PRODCUTION CAPACITY COSTS	TOTAL MARGINAL ENERGY COSTS	D	TOTAL MARGINAL DISTRIBUTION CAPACITY COSTS	TO D CUS	TAL MARGINAL DISTRIBUTION STOMER COSTS	TI	TOTAL MARGINAL RANSMISSION CAPACITY COSTS	М	TOTAL ARGINAL COSTS	С	urrent Revneues	Current Revenues as Percent of MC
SC-1 Residential	\$	37,717,330	\$ 42,460,437	\$	10,610,950	\$	13,456,920	\$	4,469,820	\$ 10	8,715,457	\$	103,442,461	95%
SC-2 Commercial	\$	22,109,287	\$ 34,738,950	\$	6,501,167	\$	3,872,880	\$	5,632,700	\$7	2,854,984	\$	111,829,584	153%
SC-3 Large General Service	\$	23,647,324	\$ 62,940,859	\$	6,733,840	\$	267,915	\$	1,889,680	\$9	5,479,618	\$	144,352,375	151%
SC-4 Contract Service	\$	709,420	\$ 826,623	\$	-	\$	1,590	\$	13,264	\$	1,550,897	\$	1,771,328	114%
TOTAL	\$	84,183,360	\$ 140,966,869	\$	23,845,957	\$	17,599,305	\$	12,005,464	\$ 27	8,600,955	\$	361,395,748	130%

		Total			
Customer Class	Current Revenues	Full MC	Current Rates as % of MC	Revenue Requirement/MC	R @ EPMC
SC-1 Residential	103,442,461	\$ 108,715,457	95%	5 140% \$	5 152,607,478
SC-2 Commercial	111,829,584	\$ 72,854,984	153%	5	5 102,268,947
SC-3 Large General Service	144,352,375	\$ 95,479,618	151%	5	5 134,027,894
SC-4 Contract Service	1,771,328	\$ 1,550,897	114%	5 140% \$	2,177,045
TOTAL	361,395,748	\$ 278,600,955		140% \$	391,081,365
ILLINOIS SPRINGFIELD Interclass Revenue Allocation

The Gas Company Schedule 1.01 Interclass Revenue Allocation

Line No.		SC-1 Residential	SC-2 Commercial	SC-3 Large General Service	SC-4 Contract Service	SYSTEM TOTAL
1	REVENUES @ CURRENT RATES	103,442,461	111,829,584	144,352,375	1,771,328	361,395,748
2	RETURN @ CURRENT RATES	-1.69%	19.52%	9.05%	-5.16%	6.02%
3	RETURN INDEX	(0.28)	3.24	1.50	(0.86)	1.00
4	PROPOSAL AT EQUALIZED RETURNS					
5	PROPOSED REVENUES	150,124,062	92,348,631	145,382,901	3,225,771	391,081,365
6	PROPOSED INCREASE (DECREASE)	46,681,601	(19,480,953)	1,030,526	1,454,442	29,685,617
7	PERCENT INCREASE (DECREASE)	45.13%	-17.42%	0.71%	82.11%	8.21%
8	PROPOSED NET OPERATING INCOME	39,635,740	18,477,784	21,994,663	942,224	81,050,412
9	RETURN	9.50%	9.50%	9.50%	9.50%	9.50%
10	RETURN INDEX	1.00	1.00	1.00	1.00	1.00
11	PROPOSAL AT EQUAL PERCENT MARGINAL COST (EPMC)					
12	PROPOSED REVENUES	152,607,478	102,268,947	134,027,894	2,177,045	391,081,365
13	PROPOSED INCREASE (DECREASE)	49,165,017	(9,560,636)	(10,324,481)	405,717	29,685,617
14	PERCENT INCREASE (DECREASE)	47.53%	-8.55%	-7.15%	22.90%	8.21%
15	PROPOSED NET OPERATING INCOME	42,119,156	28,398,101	10,639,656	(106,502)	81,050,412
16	RETURN	10.10%	14.60%	4.60%	-1.07%	9.50%
17	RETURN INDEX	1.06	1.54	0.48	(0.11)	1.00

Thank You

Carl Peterson

Center for Business and Regulation | University of Illinois Springfield One University Plaza MS UHB 4093 | Springfield, IL 62703 USA Tel: +1 312.287.0127 | <u>cpeter8@uis.edu</u>

> Concentric Energy Advisors, Inc. Chicago, IL USA Tel: +1 312-287-0127 | <u>cpeterson@ceadvisors.com</u>